
Page 1 of 7

Database Management System’s III

10.1 External, conceptual, and internal views: A database is an organized

collection of data. The data are typically organized to model aspects of reality in a

way that supports processes requiring information. For example, modelling the

availability of rooms in hotels in a way that supports finding a hotel with

vacancies.

Traditional view of data

A database management system provides three views of the database data:

 The external level defines how each group of end-users sees the

organization of data in the database. A single database can have any number

of views at the external level.

 The conceptual level unifies the various external views into a compatible

global view. It provides the synthesis of all the external views. It is out of the

scope of the various database end-users, and is rather of interest to database

application developers and database administrators.

 The internal level (or physical level) is the internal organization of data

inside a DBMS (see Implementation section below). It is concerned with

cost, performance, scalability and other operational matters. It deals with

storage layout of the data, using storage structures such as indexes to

enhance performance. Occasionally it stores data of individual views

(materialized views), computed from generic data, if performance

justification exists for such redundancy. It balances all the external views'

performance requirements, possibly conflicting, in an attempt to optimize

overall performance across all activities.

While there is typically only one conceptual (or logical) and physical (or internal)

view of the data, there can be any number of different external views. This allows

users to see database information in a more business-related way rather than from a

technical, processing viewpoint. For example, a financial department of a company

needs the payment details of all employees as part of the company's expenses, but

does not need details about employees that are the interest of the human resources

department. Thus different departments need different views of the company's

database.

http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Index_(database)
http://en.wikipedia.org/wiki/Materialized_view
http://en.wikipedia.org/wiki/Human_resources

Page 2 of 7

The three-level database architecture relates to the concept of data independence

which was one of the major initial driving forces of the relational model. The idea

is that changes made at a certain level do not affect the view at a higher level. For

example, changes in the internal level do not affect application programs written

using conceptual level interfaces, which reduces the impact of making physical

changes to improve performance.

The conceptual view provides a level of indirection between internal and external.

On one hand it provides a common view of the database, independent of different

external view structures, and on the other hand it abstracts away details of how the

data is stored or managed (internal level). In principle every level, and even every

external view, can be presented by a different data model. In practice usually a

given DBMS uses the same data model for both the external and the conceptual

levels (e.g., relational model). The internal level, which is hidden inside the DBMS

and depends on its implementation (see Implementation section below), requires a

different level of detail and uses its own types of data structure types.

Separating the external, conceptual and internal levels was a major feature of the

relational database model implementations that dominate 21st century databases.[26]

Languages

Database languages are special-purpose languages, which do one or more of the

following:

 Data definition language – defines data types and the relationships among

them

 Data manipulation language – performs tasks such as inserting, updating, or

deleting data occurrences

 Query language – allows searching for information and computing derived

information

Database languages are specific to a particular data model. Notable examples

include:

 SQL combines the roles of data definition, data manipulation, and query in a

single language. It was one of the first commercial languages for the

relational model, although it departs in some respects from the relational

model as described by Codd (for example, the rows and columns of a table

can be ordered). SQL became a standard of the American National

Standards Institute (ANSI) in 1986, and of the International Organization for

http://en.wikipedia.org/wiki/Database#cite_note-date31-26
http://en.wikipedia.org/wiki/Data_definition_language
http://en.wikipedia.org/wiki/Data_manipulation_language
http://en.wikipedia.org/wiki/Query_language
http://en.wikipedia.org/wiki/Codd%27s_12_rules
http://en.wikipedia.org/wiki/Codd%27s_12_rules
http://en.wikipedia.org/wiki/American_National_Standards_Institute
http://en.wikipedia.org/wiki/American_National_Standards_Institute
http://en.wikipedia.org/wiki/International_Organization_for_Standardization

Page 3 of 7

Standardization (ISO) in 1987. The standards have been regularly enhanced

since and is supported (with varying degrees of conformance) by all

mainstream commercial relational DBMSs.

 OQL is an object model language standard (from the Object Data

Management Group). It has influenced the design of some of the newer

query languages like JDOQL and EJB QL.

 XQuery is a standard XML query language implemented by XML database

systems such as MarkLogic and eXist, by relational databases with XML

capability such as Oracle and DB2, and also by in-memory XML processors

such as Saxon.

 SQL/XML combines XQuery with SQL.

A database language may also incorporate features like:

 DBMS-specific Configuration and storage engine management

 Computations to modify query results, like counting, summing, averaging,

sorting, grouping, and cross-referencing

 Constraint enforcement (e.g. in an automotive database, only allowing one

engine type per car)

 Application programming interface version of the query language, for

programmer convenience

10.2 Performance, security, and availability

Because of the critical importance of database technology to the smooth running of

an enterprise, database systems include complex mechanisms to deliver the

required performance, security, and availability, and allow database administrators

to control the use of these features.

Storage

Database storage is the container of the physical materialization of a database. It

comprises the internal (physical) level in the database architecture. It also contains

all the information needed (e.g., metadata, "data about the data", and internal data

structures) to reconstruct the conceptual level and external level from the internal

level when needed. Putting data into permanent storage is generally the

responsibility of the database engine a.k.a. "storage engine". Though typically

accessed by a DBMS through the underlying operating system (and often utilizing

http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/OQL
http://en.wikipedia.org/wiki/Object_Data_Management_Group
http://en.wikipedia.org/wiki/Object_Data_Management_Group
http://en.wikipedia.org/w/index.php?title=JDOQL&action=edit&redlink=1
http://en.wikipedia.org/wiki/EJB_QL
http://en.wikipedia.org/wiki/XQuery
http://en.wikipedia.org/wiki/MarkLogic
http://en.wikipedia.org/wiki/EXist
http://en.wikipedia.org/wiki/Saxon_XSLT
http://en.wikipedia.org/wiki/SQL/XML
http://en.wikipedia.org/wiki/XQuery
http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Database_engine

Page 4 of 7

the operating systems' file systems as intermediates for storage layout), storage

properties and configuration setting are extremely important for the efficient

operation of the DBMS, and thus are closely maintained by database

administrators. A DBMS, while in operation, always has its database residing in

several types of storage (e.g., memory and external storage). The database data and

the additional needed information, possibly in very large amounts, are coded into

bits. Data typically reside in the storage in structures that look completely different

from the way the data look in the conceptual and external levels, but in ways that

attempt to optimize (the best possible) these levels' reconstruction when needed by

users and programs, as well as for computing additional types of needed

information from the data (e.g., when querying the database).

Some DBMSs support specifying which character encoding was used to store data,

so multiple encodings can be used in the same database.

Various low-level database storage structures are used by the storage engine to

serialize the data model so it can be written to the medium of choice. Techniques

such as indexing may be used to improve performance. Conventional storage is

row-oriented, but there are also column-oriented and correlation databases.

Materialized views

Often storage redundancy is employed to increase performance. A common

example is storing materialized views, which consist of frequently needed external

views or query results. Storing such views saves the expensive computing of them

each time they are needed. The downsides of materialized views are the overhead

incurred when updating them to keep them synchronized with their original

updated database data, and the cost of storage redundancy.

Replication

Occasionally a database employs storage redundancy by database objects

replication (with one or more copies) to increase data availability (both to improve

performance of simultaneous multiple end-user accesses to a same database object,

and to provide resiliency in a case of partial failure of a distributed database).

Updates of a replicated object need to be synchronized across the object copies. In

many cases the entire database is replicated.

Security

http://en.wikipedia.org/wiki/File_system
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Database_storage_structures
http://en.wikipedia.org/wiki/Column-oriented_DBMS
http://en.wikipedia.org/wiki/Correlation_database

Page 5 of 7

Database security deals with all various aspects of protecting the database content,

its owners, and its users. It ranges from protection from intentional unauthorized

database uses to unintentional database accesses by unauthorized entities (e.g., a

person or a computer program).

Database access control deals with controlling who (a person or a certain computer

program) is allowed to access what information in the database. The information

may comprise specific database objects (e.g., record types, specific records, data

structures), certain computations over certain objects (e.g., query types, or specific

queries), or utilizing specific access paths to the former (e.g., using specific

indexes or other data structures to access information). Database access controls

are set by special authorized (by the database owner) personnel that uses dedicated

protected security DBMS interfaces.

This may be managed directly on an individual basis, or by the assignment of

individuals and privileges to groups, or (in the most elaborate models) through the

assignment of individuals and groups to roles which are then granted entitlements.

Data security prevents unauthorized users from viewing or updating the database.

Using passwords, users are allowed access to the entire database or subsets of it

called "subschemas". For example, an employee database can contain all the data

about an individual employee, but one group of users may be authorized to view

only payroll data, while others are allowed access to only work history and medical

data. If the DBMS provides a way to interactively enter and update the database, as

well as interrogate it, this capability allows for managing personal databases.

Data security in general deals with protecting specific chunks of data, both

physically (i.e., from corruption, or destruction, or removal; e.g., see physical

security), or the interpretation of them, or parts of them to meaningful information

(e.g., by looking at the strings of bits that they comprise, concluding specific valid

credit-card numbers; e.g., see data encryption).

Change and access logging records who accessed which attributes, what was

changed, and when it was changed. Logging services allow for a forensic database

audit later by keeping a record of access occurrences and changes. Sometimes

application-level code is used to record changes rather than leaving this to the

database. Monitoring can be set up to attempt to detect security breaches.

10.3 Transactions and concurrency

http://en.wikipedia.org/wiki/Database_security
http://en.wikipedia.org/wiki/Privilege_(Computing)
http://en.wikipedia.org/wiki/Data_security
http://en.wikipedia.org/wiki/Physical_security
http://en.wikipedia.org/wiki/Physical_security
http://en.wikipedia.org/wiki/Data_encryption
http://en.wikipedia.org/wiki/Database_audit
http://en.wikipedia.org/wiki/Database_audit

Page 6 of 7

Database transactions can be used to introduce some level of fault tolerance and

data integrity after recovery from a crash. A database transaction is a unit of work,

typically encapsulating a number of operations over a database (e.g., reading a

database object, writing, acquiring lock, etc.), an abstraction supported in database

and also other systems. Each transaction has well defined boundaries in terms of

which program/code executions are included in that transaction (determined by the

transaction's programmer via special transaction commands).

The acronym ACID describes some ideal properties of a database transaction:

Atomicity, Consistency, Isolation, and Durability.

Migration

A database built with one DBMS is not portable to another DBMS (i.e., the other

DBMS cannot run it). However, in some situations it is desirable to move, migrate

a database from one DBMS to another. The reasons are primarily economical

(different DBMSs may have different total costs of ownership or TCOs),

functional, and operational (different DBMSs may have different capabilities). The

migration involves the database's transformation from one DBMS type to another.

The transformation should maintain (if possible) the database related application

(i.e., all related application programs) intact. Thus, the database's conceptual and

external architectural levels should be maintained in the transformation. It may be

desired that also some aspects of the architecture internal level are maintained. A

complex or large database migration may be a complicated and costly (one-time)

project by itself, which should be factored into the decision to migrate. This in

spite of the fact that tools may exist to help migration between specific DBMSs.

Typically a DBMS vendor provides tools to help importing databases from other

popular DBMSs.

Building, maintaining, and tuning

After designing a database for an application, the next stage is building the

database. Typically an appropriate general-purpose DBMS can be selected to be

utilized for this purpose. A DBMS provides the needed user interfaces to be

utilized by database administrators to define the needed application's data

structures within the DBMS's respective data model. Other user interfaces are used

to select needed DBMS parameters (like security related, storage allocation

parameters, etc.).

When the database is ready (all its data structures and other needed components are

defined) it is typically populated with initial application's data (database

http://en.wikipedia.org/wiki/Database_transactions
http://en.wikipedia.org/wiki/Fault_tolerance
http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Crash_(computing)
http://en.wikipedia.org/wiki/Lock_(database)
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)
http://en.wikipedia.org/wiki/Total_cost_of_ownership
http://en.wikipedia.org/wiki/General-purpose_DBMS
http://en.wikipedia.org/wiki/User_interface

Page 7 of 7

initialization, which is typically a distinct project; in many cases using specialized

DBMS interfaces that support bulk insertion) before making it operational. In some

cases the database becomes operational while empty of application data, and data

is accumulated during its operation.

After the database is created, initialised and populated it needs to be maintained.

Various database parameters may need changing and the database may need to be

tuned (tuning) for better performance; application's data structures may be changed

or added, new related application programs may be written to add to the

application's functionality, etc.

10.4 Backup and restore

Sometimes it is desired to bring a database back to a previous state (for many

reasons, e.g., cases when the database is found corrupted due to a software error, or

if it has been updated with erroneous data). To achieve this a backup operation is

done occasionally or continuously, where each desired database state (i.e., the

values of its data and their embedding in database's data structures) is kept within

dedicated backup files (many techniques exist to do this effectively). When this

state is needed, i.e., when it is decided by a database administrator to bring the

database back to this state (e.g., by specifying this state by a desired point in time

when the database was in this state), these files are utilized to restore that state.

Other

Other DBMS features might include:

 Database logs

 Graphics component for producing graphs and charts, especially in a data

warehouse system

 Query optimizer – Performs query optimization on every query to choose

for it the most efficient query plan (a partial order (tree) of operations) to be

executed to compute the query result. May be specific to a particular storage

engine.

 Tools or hooks for database design, application programming, application

program maintenance, database performance analysis and monitoring,

database configuration monitoring, DBMS hardware configuration (a DBMS

and related database may span computers, networks, and storage units) and

related database mapping (especially for a distributed DBMS), storage

allocation and database layout monitoring, storage migration, etc.

http://en.wikipedia.org/wiki/Database_tuning
http://en.wikipedia.org/wiki/Database_log
http://en.wikipedia.org/wiki/Query_optimizer
http://en.wikipedia.org/wiki/Query_optimization
http://en.wikipedia.org/wiki/Query_plan

